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The complete probability distribution of nearest-neighbor configurations has been inferred
for a number of cubic binary alloys from their experimentally determined short-range order

parameters.

The probability variation method, derived previously, was used to perform the

calculations. This procedure, which is used to generate n-site probabilities from experimen-
tally measured pair probabilities, requires the physical assumption that the configurational
energy of the system can be adequately represented by pairwise interactions whose range does
not exceed the diameter of the cluster. Results are presented here for f-CuZn, CuzAu, CuAu,
AugCu, Cugs sAlyy.5, CuszNigg, and AugPdy, and the implications for ordering (or clustering)
behavior are discussed. Finally, tables of coefficients for the bce and fec lattice are given

to enable one to carry out this type of analysis for any cubic binary system.

1. INTRODUCTION

In a previous paper® (hereafter referred to as I)
a systematic procedure was presented for using the
measured values of Warren short-range order

(SRO) parameters {a, } in binary alloys to make a
“best” prediction of the probability distribution of
n-site atom configurations (where n can be 10 or
more). These multisite probability distributions
are potentially important for understanding nuclea-
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tion processes, unraveling Mossbauer spectra, es-
timating the distribution of strain fields at the atom-
ic level, or simply visualizing the configurational
state of a partially ordered binary system. It also
offers a powerful method for predicting the atomic
configuration of equilibrium low-temperature phases
from high-temperature data, even when such phases
are prevented from forming for kinetic reasons.
This predictive procedure was called the proba-
bility variation method (PVM), and it can be briefly
summarized. If P,ﬁ"’ is the probability that an »n-site
cluster chosen randomly in the lattice is of config-
uration type &, then the PVM determines the Pﬁ"’ by
varying them to maximize the function
I=-5,P{™ In P{ subject to a set of linear con-
straints that ensure that the composition and SRO
parameters of the alloy remain fixed. The method
rests upon the physical assumption that the configu-
rational energy of the lattice depends only upon the
composition and the a,’s, and thus remains constant
during the variation of the P,ﬁ"”s. This is equivalent
to assuming that there are no important contribu-
tions to the configurational energy from three- or
more-body interactions in the crystal. The PVM
can then be regarded as a technique for finding the
P{™’g that maximize the entropy of a microcanonical
ensemble of configurational states. It was also
shown in I that this microcanonical ensemble con-
tains many more configurational states than are
possible on a real lattice. A plausibility argument
was given that the maximal entropy point of the real
lattice ensemble always coincided with the maximal
point of the artificial ensemble used in the calcula-
tions. This mathematical assumption could not be
rigorously proven but was shown to be valid for a
number of cases where the exact result was pre-
viously known. At the very least the PVM yields a
set of P,’s that are consistent with the experimental
data on composition and SRO of the alloy. This is
a significant advantage relative to other analytical
methods of determining the probability distribution
(such as the Kirkwood superposition approximations)
that do not satisfy such self-consistency conditions.
In the present paper we have used the PVM to de-
termine the probability distribution of a cluster con-
sisting of a central site and all its nearest neighbors
for a number of cubic alloys. In particular we have
analyzed 8 — CuZn, CuzAu, CuAu, AusCu,
Cugs,5 Aly4.5, CusyNigg, and AugyPd,, using the avail-
able experimental SRO data for these systems. We
find that the most enhanced cluster configuration
relative to the perfectly random distribution for the
alloys 8-CuZn, CuzAu, and CuAu is the configura-
tion of the perfectly ordered state in each case. The
surprising result emerges in Au;Cu that at a tem-
perature 11% above the ordering temperature the
most enhanced configuration appears to be the per-
fectly ordered configuration of CuAu. We shall of -
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fer below several possible explanations of this re-
sult.

The Cugs 5Aly, 5 results show a strong enhance-
ment of a tetrahedral cluster of Al atoms about a
central Cu atom reminiscent of the metastable or-
dered bee B phase found at the CuzAl composition.
This supports the picture of the SRO state in this
system proposed by Borie and Sparks. 2 1t also ex-
plains why Gehlen and Cohen® found so few of these
tetrahedral clusters in a computer mapping of this
system since, although the tetrahedral cluster is
strongly enhanced, the volume fraction of the lattice
occupied in this way is still very small.

The Cu;,Ni,g distribution shows primarily Cu- and
Ni-rich clusters but with a marked tendency to
cluster on (111) planes. This agrees with the model
proposed by Cohen! from his computer mapping of
the SRO state. Further evidence in support of the
growth of Ni and Cu platelets on (111) planes is given
below on the basis of the pair interactions in this
alloy previously determined by Moss and Clapp.

The distributions derived for the AugyPdy, alloy
indicate a definite tendency for this system to order
but it is difficult to decide what the configuration of
the hypothetical perfectly ordered state is. The
equilibrium phase diagram indicates a single solid
solution for all compositions so that the ordering
temperature is apparently too low for the ordering
reaction to ever go to completion. Lin, Spruiell,
and Williams® have recently suggested a particular
configuration for the ordered crystal on the basis of
a computer simulation of the SRO state. Our dis-
tribution partially supports their conclusion but also
suggests that the real answer may be even more
complicated.

II. PROBABILITY VARIATION METHOD

The first step in applying the PVM is to choose
the n-site cluster to be studied. A cluster large
enough to show many details of the ordering process
but small enough for the calculations to be manage -
able consists of a site and all of its nearest neigh-
bors. The next step is to tabulate all of the possible
configurations of this cluster and to evaluate by in-
spection the contribution that each configuration will
make to the lattice composition and pair correla-
tions. This was done in I for the simple example of
a triplet cluster and the results were presented
there in Table I. Similar tabulations for the near-
est-neighbor cluster on bcc and fcc lattices are
given in the Appendix. The third step is to con-
struct the linear equations for the P,’s where the
jth equation will be of the form

K

gza’jP,:b, (=1, J) . (1)
The a¥’s are determined from the cluster tables
and the b,’s are set by the composition and SRO
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TABLE I. Nearest-neighbor spectrum of Cu atoms in CuZn at T=543°C (T/T,=1.10).
CuZn T=543°C (T/T¢=1.10)
Q=-.179 @200=+.103 @220=+.066 @222=+.045
2.0 L7
TOTAL 100%
data. These equations are also contained in the would represent a possible state of the lattice. If
Appendix. the P,’s are sufficiently limited by these conditions,

The number of linear equations J is always ex-
ceeded by K, the number of unknowns (the P,’s);
with additional conditions that each P, must not be
less than zero, the possible range of each P, may
be quite small. In fact, if the pair correlations are
assigned the values corresponding to a perfectly
ordered structure, the P,’s will become completely
determined.

So far no approximations have been introduced,
and any set of P,’s that satisfies the above conditions

it may not be necessary to go further. However,
when the lattice contains a substantial degree of
disorder, it is desirable to determine the most
probable set of P,’s. It was pointed out in I that
this most probable set will represent the state of
the lattice all but a negligible fraction of the time.
It is impossible to proceed further by any method
without making some assumption about the configu-
rational energy of the lattice. The basic hypothesis
of the PVM has been stated in Sec. I and is essen-
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tially that the configurational energy can be ex-
pressed as

m
E= Z; V,Ol, y
i=1

(2

and that m, the maximum neighbor index in the
summation, does not exceed the maximum neighbor
separation contained in the cluster. For the cluster
chosen here, m would correspond to fifth neighbors
in a bec lattice and fourth neighbors in a fcc lattice.
The V,’s are pairwise interaction parameters.
The final step is to maximize the PVM entropy
measure
K
I(P)=- 21 W,P,InP, (3)
k=
by variation of the P,’s subject to the linear con-
straints given in Eq. (1). W, is the multiplicity of
the kth configuration and represents the number of
configurations that are equivalent under cubic sym-
metry. Formally, the variation can be accomplished
by the introduction of a Lagrange multiplier A, for
each constraint, forming the augmented function
I'(P,) given by

J
I'(P)=I1(P,) + Zz XCy(Py) (4a)
J=
where
K
CiP)=22a"P,-b, . (4b)
k=1

The P,’s can now be regarded as independent
variables and the maximum of I( P,) is determined
by the equations

9I(P,)

J
5P =0=-W,(1+InP,)+ 2 n;a%  (k=1,K).
k =1

(5)
Thus,

J
Pk=exp(W;‘Z£ x,a?—l). (6)

i=

The );’s are now adjusted to satisfy the J linear

constraints. This is accomplished by inserting this
expression for the P,’s into Eq. (1), giving J non-
linear equations in J unknowns (the ,’s). An itera-
tive method for determining the P,’s can then be
used.

IIl. ATOMIC CONFIGURATION DISTRIBUTION

In this section the distributions of nearest-neigh-
bor configurations are displayed for a number of al-
loys as determined by the PVM from available SRO
data. In the case of fcc systems it is impractical
to present the entire distribution since this would

PHILIP C.

CLAPP 4

involve over 300 distinct configurations. We have
instead shown only clusters having enhancement
factors (EF) greater than 1 and have shown only the
first dozen or so. The EF is the ratio of a cluster’s
population in the SRO state to its population in an
ideal random alloy of the same composition. The
clusters are displayed in the order of their EF’s
whose magnitudes are given above each cluster. In
addition, the percent of atoms in the lattice of a
given kind that have that particular nearest-neighbor
configuration (or one of its symmetrical equivalents)
is given in parentheses beneath each cluster. The
total percent of the distribution shown is indicated
at the bottom of the table. A cluster can have a
larger EF but a smaller lattice percentage than
another cluster simply because the percentage of
the latter cluster was higher in the completely ran-
dom state. We have also used the convention of in-
dicating the positions of only one kind of atom on the
nearest-neighbor shell, the unlabeled positions being
occupied by the other atom type.

B-CuZn

The complete nn spectrum of a Cu atom at 543 °C
(10% above the ordering temperature) is shown in
Table I for this bcc alloy as determined from the
SRO parameters reported by Walker and Keating.”
Although the actual alloy contained 53.7-at.% Cu,
the SRO parameters were determined on the basis
of an equiatomic model and we have followed this
assumption of a 50-50 alloy in our analysis. Thus
the distribution for a Zn-center atom is obtained by
interchanging Zn and Cu sites everywhere in Table I.

Qualitatively, the distribution is as one would ex-
pect. The most enhanced cluster is that represent-
ing the nearest-neighbor configuration in the per-
fectly ordered lattice, the next most enhanced is
the “one-mistake” cluster, and the next three are
the three possible “two-mistakes” clusters. A
model of the SRO state based on the idea of perfectly
ordered regions in a disordered matrix does not
seem justified for this system. Since only 3% of
the Cu (or Zn) atoms see a perfectly ordered near-
est-neighbor environment, the volume fraction of
such “microdomains” could be 3% at most.

Cu; Au

Moss® has measured the Warren SRO parameters
at two temperatures above the ordering temperature
in this system. Therefore, it is possible to deter-
mine the cluster distribution at these two temper-
atures and study the evolution of the SRO state as it
approaches the long-range ordered (LRO) state.
The distribution for Cu-centered clusters is given
in Table II and that for Au-centered clusters in Ta-
ble III. The numbers at the higher temperature
(10% above T,) are shown without parentheses and
those for the lower temperature (3% above T,) are
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TABLE II. Nearest-neighbor spectrum of Cu atoms in CujAu at 7'=450°C (405°C).
CuzAu T =450°C(405°C)
@, =—.195(-.218) a,=+.215(+.286) @3=+.003(-.012) @4=+.077(+.122)

66.6 (112.8) 28.8 (40.9) 8.0(7.2) 6.8 (7.6) 6.4(7.2)
! A
1
A A
: C
A ,,L.._A? A
6.8 %(9.6%) 2.5%(2.2%) 9.6 % (10.7%) 12.0% (13.5%)
4.5(4.5) 4.2(4.3) 3.4(;.4) 3.4(2.6)
| ' /A
A A
1 c
A
J SO,
. A e A)‘
r'd 7 A—V
1.6%(1.4%) 12.5% (12.9%) 7.9%(8.1%) 11%(0.75%) 11% (0.81%)
3.4(2.6) 2.9(2.5) 1.4(1.4) 1.4(1.5) 1.4(1.5)

L,
0.54%(0.41%) 2.8%(2.2%) 2.7%(2.6%) 1.3% (1.4 %) 0.67%(0.70 %)

TOTAL 71.6% (80.5%)

in parentheses. as compared to the comparable cluster in the Cu-Zn
Several interesting aspects of the distribution are distribution at the same relative temperature. In

immediately apparent. There is a surprising de- fact, 34% of the Cu atoms and 64% of the Au atoms
gree of “order ” in the nearest-neighbor environ- have one mistake or less in their nearest-neighbor
ment even at the higher temperature. The Cu-cen- shell at T=1.107,. These fractions increase to
tered perfect-order cluster is very highly enhanced 42 and 77%, respectively, at T=1.03T,.

TABLE III. Nearest-neighbor spectrum of Au atoms in CuzAu at T=450°C (405°C) .

CuzAu T=450°C(405°C)

@y =—495(-.218) a,=+.215(+.286) a3=+.003(-.012) a4=+.077(+.122)

5.1 (2.4) 3.8(4.5) 2.5(2.0) 1.6(1.0) 1.6(1.1)
e P . P |
c C 1 1 1 1
| A | A : A : A : A
¢ I ) R AR R P el
’c/ c /’/ ’/ A /Ar ,/I
¢ z A
16.2%(20.3%) 48.3%(56.9%) 10.4% (8.4 %) 3.4%(2.4%) 13.7%(9.3%)

TOTAL 92%(97%)
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TABLE IV. Nearest-neighbor spectrum of Cu atoms in CuAu at T=425°C (1'/7.=1.025).

CuAu T =425°C (T/Tc=1.025)

@ =-.123 az=+.048

az=+.000 @4=+.070

4.4

3.7

2.8 c 2.6 2.4
| e i
. | | S
i el N
: b= ('c-- P Iemfemm
7 c” c”
¢ z L2 ¢
1.6 % 3.10% 2.8%

TOTAL 26.5%

The second most enhanced Cu-centered cluster
is a particularly interesting type of mistake because
it corresponds to the perfectly ordered environment
of a different LRO arrangement variously referred
to as the DOy, structure, the NizV structure, or the
CugAu M =1 long-period superlattice. Moss and
Clapp® have previously demonstrated that the pair
interactions in CuzAu are such that the normal L1,
CugAu structure is only slightly more favored en-
ergetically than the DO,, structure and this is un-
doubtedly the source of the “confusion” in the SRO
state. It may be added that as one goes to the lower
temperature although the other Cu-centered clusters
either remain at the same lattice fraction or de-
crease, both the L1, and DO,, clusters increase ap-
preciably so that this competition has a marked
persistance and will appear in the LRO state as
(001)-type antiphase boundaries.

CuAu

The SRO data of Roberts® at T=1.025T, were used
to generate the cluster distribution shown in Table
IV. At this temperature the tendency to order into

the L1, structure is apparent but there is still a
considerable degree of disorder present in the near-
est-neighbor environment and the perfect-order
cluster does not show nearly the same degree of
dominance here as compared to the case of CugAu.

Au;Cu

In Tables V and VI the rather surprising distribu-
tion for AusCu is given as derived from the SRO
measurements of Batterman.!® It is normally
thought that AuzCu orders in the L1, structure; but
the most enhanced Cu-centered clusters are of the
L1, CuAu type, and the fourth most enhanced cluster
is even of the CuzAu type. The Au-centered cluster
distribution is less paradoxical but it also shows a
significant number of strongly enhanced clusters of
the L1, CuAu type. If true, this would suggest that
the ordering process in AusCu is rather complex
and implies that the transformation may actually be
to an ordered L1, CuAu phase intermixed with a Au-
rich phase rather than to a homogeneous L1, Au;Cu
phase. Since the superlattice reflections cannot
distinguish between these two possibilities, the
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fundamental reflections would have to be examined
for appreciable broadening or splitting in the trans-
formed state. The transformation is quite sluggish,
however, so that it may require long times before
the splitting of the fundamental spots is observable.

On the other hand, the SRO measurements in
AuyCu are particularly difficult because of large-
size-effect scattering and because of the difficulty
in achieving equilibrium. Thus, the measured a’s
may be inaccurate and if the errors were significant
this would considerably distort the derived distri-
butions.

Cu-14.5% Al

The o’s as determined by Houska and Averbach!?
from powder samples at - 190 °C were used to cal-
culate the cluster distribution in Table VII. The
SRO structure of this alloy has been of considerable
interest ever since the radiation-damage experi-
ments of Wechsler and Kernohan'? showed that the
electrical resistivity first decreases and then in-
creases with increasing exposure time in a reactor.
It was surmised that this anomalous behavior was
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connected with the induced changes in the SRO of
the alloy. Houska and Averbach also determined
the o’s for an irradiated sample and found that all
of the SRO parameters increased in magnitude rela-
tive to the normal sample, indicating a pronounced
increase in the degree of the SRO. However, the
value of a, that they report is 20% greater than the
maximum theoretical limit for an alloy of this com-
position, which makes it impossible to generate the
cluster distribution for the irradiated alloy. This
error indicates that either the actual composition
of the alloy was in excess of 17-at.% Al or the SRO
diffuse scattering was not correctly separated from
the other diffuse scattering contributions.

Borie and Sparks? afterwards performed a more
detailed diffuse -scattering experiment in two planes
of reciprocal space for single-crystal samples of
Cu-16% Al alloys before and after irradiation. On
the basis of their measurements, they suggested an
interesting model for the SRO structure. They pro-
posed that the Al atoms for the most part were
grouped in tetrahedral clusters (the first cluster
shown in Table VII) and that no Al nearest-neighbor

TABLE V. Nearest-neighbor spectrum of Cu atoms in AuzCu at T=250°C (T/T,=1.11).

AuzCu

T=250°C

(T/Tc-‘-‘ |.||)

Q =-.06 02=+.20

az= -.08

ag=+.14

5.1

4.5

3.3

.3
o ¢ : o__c L e
1 c 1 ] I ] c
[
1 © | © | | c | c
Rt ST p et EEE it nal y e S Aee---
/c C /// /,, /C/ c /C/ c
3.21% 19.3% 3.14% 2.75% 41 %

TOTAL 55.6%
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TABLE VI. Nearest-neighbor spectrum of Au atoms in AugCu at T=250°C (T/T,=1.11).

AuzCu T=250°C (T/Tc=LIl)

Qa =-.06 02=+.20

03=—.08

ag=+.14

20.3

8.7
L
! c
} A
L)
_c C
45% .30% 6.81%
3.l 3.0
AC_ci_/c
| A /J
I I
/C’ C
32% .32% .006%

TOTAL 23.0%

pairs occurred. To further support their model,
they observed that the g;-CugAl metastable phase,
which is an ordered DO, (BiF;) structure and ap-
pears by quenching the bcc disordered g phase, may
be described as an array of regular Al tetrahedra.
Although the proposed Al groups in the fcc SRO
phase are not regular tetrahedra (two sides are
second-neighbor distances and four are third-neigh-
bor distances), they are close to being so and the
measured atomic displacements were of the right
sign to improve the congruence.

Although their model is provocative, neither of
their conjectures can be proven with certainty by
their data and even within the framework of their
model a considerable degree of freedom remains
in the picture of the SRO structure arising from the
various ways one can pack the tetrahedral groups.

Gehlen and Cohen® took issue with the tetrahedral
model on the basis of a computer simulation of the
SRO structure that they generated using the SRO
parameters of Houska and Averbach!! (since the
diffraction data of Borie and Sparks gives linear
combinations of the a’s but not the a’s individually).

By visually scanning their computer-simulated pat-
terns, they concluded that the dominant feature of
the SRO structure consisted of linear chains of Al
atoms in second-neighbor relationships and that
isolated tetrahedral clusters were hardly ever ob-
served.

Our cluster distribution in Table VII supports
both models and shows that they are complementary
rather than contradictory views of the SRO struc-
ture. On the one hand, by far the most enhanced
cluster in the distribution is the tetrahedral group
proposed by Borie and Sparks, so that the tendency
of the system is quite clear. On the other hand,
the lattice fraction of such clusters is still very
small, so that they would not be a striking feature
of an SRO configuration map. The tendency for Al
atoms to avoid each other as nearest neighbors is
also apparent since the only Al-centered cluster
that is enhanced relative to the random state con-
tains no Al atoms in its nearest-neighbor shell and
constitutes 72% of the Al sites. This fraction un-
doubtedly approaches 100% in the irradiated sam-
ples.
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Furthermore, the Al chains of Gehlen and Cohen
will form a tetrahedral group at their point of
closest approach if that separation is a second-
neighbor distance and the chains are orthogonal.

If they are parallel, they will form an array of
square groups, which is the second most enhanced
cluster in our distribution. Given the high density
of chains necessary to account for the Al concen-
tration and realizing that a nearest-neighbor ap-
proach of chains is nearly forbidden leads one to
the conclusion that second-neighbor chain interac-
tions will occur quite frequently in the Gehlen-
Cohen scheme. Finally, one may observe that the
Cu;Al (DOy) structure can be viewed as either a
perfect array of second-neighbor Al chains sepa-
rated by second-neighbor distances or as a perfect
stacking of Al tetrahedra.

Cus, Nigg

Recently Mozer, Keating, and Moss'? have deter -
mined the SRO parameters of this alloy at 550 °C
from a diffuse -neutron-scattering measurement.
The Cu-Ni phase diagram indicates a homogeneous
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solid solution across the entire composition range
but it is now generally agreed from thermodynamic
data and SRO studies that Cu-Ni is potentially a
clustering system with the predicted miscibility gap
maximum at about 300 °C and 70-at.% Ni. Our
calculated cluster distributions shown in Tables
VII and IX give further evidence for this tendency
and provide some interesting information about the
morphology of the pre-precipitation stage (actual
precipitation does not occur presumably because of
the low transformation temperature).

Although practically all of the enhanced clusters
show that the central atom prefers to surround it-
self with its own kind, the other species appear to
segregate on (111) planes. Over half the tabulated
configurations can be classified in this manner if
no more than one mistake is allowed, and this sug-
gests that the clustering occurs as (111) platelets
of each kind. This conjecture is supported by a
prior study of Cohen, * who made a computer simula-
tion of the SRO state of this alloy and noticed these
(111) platelets as a significant feature of his con-
figurations.

TABLE VII. Nearest-neighbor spectrum in Cugs sAlyy.s.

Cugs.s Aliz s

a; =—137 ap=+.124 az=+.096 az=-.04

56 22

7.0 6.5 4.4

17.4%

0.08%

TOTAL 56.4%
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TABLE VIII. Nearest-neighbor spectrum of Cu atoms in CugyNiyg.
CuszNigs
@ =+.121 ap=-.008 az=+.011 @4=+.012
12.9 5.9 4.6 4.2 29
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_C C e ’// //’
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N r
] ! N
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I - Lo ---J
7 N’ /// N
0.5% 1.8%
2.3 2,2
N7 | N
LN !
! ]
L -
" A=l e
/N Pid N
N
0.7% 0.4% 0.9%
TOTAL 21.6%

In addition, Moss and Clapp® have determined the
strengths of first- and second-neighbor interactions
in this alloy and found that the second-neighbor in-
teractions (V,) were negative (meaning that second
neighbors prefer to be unlike) and from 50 to 65%
as strong as the positive first-neighbor interaction
(V1). This places the alloy close to the limit of
stability for phase separation on their lowest-energy
structure diagram (Fig. 6 of Ref. 14) and adjacent
to the energy region of stability for the L1; (CuPt-
type) ordered structure. The L1, structure con-
sists of alternate atomic (111) planes of each type
and can be regarded as the atomic limit of the (111)
platelet morphology.

Assuming that V,= — %V, one can calculate that
the energy gained by replacing a Cu atom at the edge
of a (111) Ni platelet by a Ni atom from the disor-
dered matrix would be 2V,, as opposed to only V,
for the binding energy of a site on the top or bottom
surface of the platelet. This calculation assumes
the average environment of an edge site would con-
tain two Ni atoms of the platelet as nearest neigh-
bors but no platelet atoms as second neighbors,
whereas a surface site would have three Ni nearest

neighbors and three Ni second neighbors if the plate-
let were two or more atom layers thick. Thus one
can expect from the energetics that in the nucleation
phase the platelets would initially expand their di-
ameter more rapidly than they would thicken, giving
large thin regions of each kind of atom lying on

(111) planes. We can then explain the structure of
the SRO state as being simply the precursor of this
predicted mode of growth.

A further prediction can be made that since the
relative binding energies of surface and edge sites
will be a very sensitive function of the ratio of V,
to V; in this alloy, one can expect large changes in
the precipitate morphology (if precipitation can be
induced) and large changes in the SRO structure as
a result of small variations in V,/V,. Pressure or
alloy additions should be sufficient to see these ef-
fects.

AugoPdy

The Au-Pd binary diagram indicates a homoge-
neous solid solution at all compositions. However,
the relative heats of formation show a maximum
negative value at the 40-at.% Pd composition. The
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largest anomalous changes in electrical resistivity
and Hall constant after cold work and the greatest
resistivity recovery upon annealing also occur at
this composition. These facts suggest that a sig-
nificant amount of SRO is present in this particular
alloy and led Lin, Spruiell, and Williams® to mea-
sure the SRO parameters by means of x-ray diffuse
scattering. The measurements were made at room
temperature on a single-crystal sample that had
been slowly cooled from 1050 °C.

We have used the first four SRO parameters de-
termined by Lin, Spruiell, and Williams to generate
the Pd-centered cluster distribution shown in Table
X and the Au-centered cluster distribution displayed
in Table XI. The Pd-centered distribution is more
easily analyzed and we shall confine our attention
to it.

The most enhanced cluster is a tetrahedral ar-
rangement of four Pd atoms about the central Pd
atom. This is precisely the nearest-neighbor en-
vironment that an atom would have in the hypotheti-
cal AB analog of the DO,, structure proposed by
Clapp and Moss, '* and shown below in Fig. 1. On

the basis of their analysis, Lin, Spruiell, and
Williams have in fact suggested that this is the or-
dered structure that the system is tending toward
and if so would be the first known example of this
atomic arrangement in alloys. The ordered struc-
ture may also be described as an M =1 antiphase
derivative of the L1, (CuAu) structure. This is
perhaps significant because the second most en-
hanced cluster is the nearest-neighbor configuration
of the L1, structure itself. All but two of the sub-
sequent nine most enhanced clusters are single-
defect relatives of one or the other of these first
two clusters. Although the M =1 antiphase structure
does not contain any L1,-type clusters, an M =2
(and all higher M) antiphase structure will have a
mixture of these two cluster types. The M =2
structure is shown in Fig. 2. The proportion of
L1,-type clusters increases as M increases and the
L1, lattice may be regarded as the limit as M ap-
proaches infinity.

Although Lin, Spruiell, and Williams may be
correct in their conjecture that the M =1 structure
is the ultimate ordered state of this system, from

TABLE IX. Nearest-neighbor spectrum of Ni atoms in CusyNigj.

CusaNigg
Qay =+ 121 (12=-.008 03""".0“ 04:+.012
19.4 8.4 5.8 5.6

N // // ,/
0.3% 1.6% 0.9% 2.4%
34 3.4 3.0
c
H c : c ; c
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TOTAL 17.0%
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TABLE X. Nearest-neighbor spectrum of Pd atoms in AugyPdy.

AUGQ Pd40
ao0=-.126 @z00=+.061 az;=+.029 az20=-.033
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I
1.78%
2.0 |.9P
1 []
1 1
i p i
Pl !
/)_ T2 /}-_——-—
2.34% 4.30% 5.70%
TOTAL 43.9%

our cluster distribution it would appear that the
M = 2 structure is just as likely a candidate. An
important observation made by the above investi-
gators was that the diffuse SRO peak was actually
a double peak lying at 130 and 150 in reciprocal
space. This is not commensurate with the super-
lattice peak positions of any known structure. The
super -lattice positions for the M =1 structure would
be at 130 and those for the M =2 at 130 and 130.
The most likely explanation of this phenomenon
is along the lines proposed by Moss'® and recently
used by Hashimoto and Ogawa'® to explain the split
diffuse peaks observed above T, in CusAu. Moss
points out that, if the conduction-electron Fermi
surface has a large flat region, this will produce a
significant contribution to the interatomic ordering

R
B

Jie Jis S
y E B FIG. 1. M-=1 antiphase
A opm B A derivative of the L1, (CuAu)
S ABL__|__g structure.
I, A

energy in the form of a long-range oscillatory po-
tential whose wavelength is related to the diameter
of the Fermi “sphere” at the position of the flats.
This oscillatory potential will produce composition
fluctuations in the disordered phase of the same
wavelength, which in general will not be compatible
with the integral periods required of an ordered
structure. The lowest-energy ordered structure
will be the one having an oscillation in composition
closest in wavelength to that of the conduction-elec-
tron oscillatory potential.

If this is the phenomenon that we are witnessing
in the AugyPd,, alloy, it offers some interesting in-
formation about the topology of the Fermi surface

8 A R
] ]
B B / A / A
-/: : / VAR RN g
1A A i | B B
1 192 |/ ] 17 1/

L S I S e - WP L I
TA AT 1B B
Bromfom|mmoB oo oA SA

S B |2 B | A A /

FIG. 2. M=2 antiphase derivative of the L1, structure.
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1>

TABLE XI. Nearest-neighbor spectrum of Au atoms in AugyPdy,.

Augo Pdao

ao0=-.126 azgo=+.061 az;=+.029 az30=-.033

0.85 % .54 % .54 %

TOTAL 23.4%

and partially explains the sluggish ordering behav- APPENDIX: PVM TABLES FOR bcc AND fec
ior. Our conclusion is, however, that one still NEAREST-NEIGHBOR SHELL CLUSTERS
cannot decide whether the M =1 or the M =2 ordered

structure will be the ultimate ground state. Following I, the configuration of a cluster is

TABLE XII. PVM parameters for bcc nearest-neighbor cluster. See Fig. 3 for site indices.

Index Sites with Multiplicity Composition Second Third Fifth
neighbor neighbor neighbor
k oy=—1 W, W, (o) W, C? W,C3 W,C}
1) .. 1 +1(=1) +1 +1 +1
2(2) 1 8 +6(—6) +4 +4 +4
3@) 1, 2 12 +6(~6) +4 0 0
4@) 1,6 12 +6(—6) (o +4 0
5(5) 1, 7 4 +2(-2) 0 0 +4
6(6) 1,25 24 +6(—6) +4 -4 -12
7(7) 1, 2,8 24 +6(—6) -4 -4 +12
8(8) 1, 6, 8 8 +2(-2) -4 +4 -4
9 1, 2, 5, 6 6 0 +2 -2 -6
10 1, 2,5, 8 24 0 0 -8 0
11 1, 2,5, 7 24 0 -8 0 0
12 1, 2,83, 6 8 0 0 0 -8
13 1,2, 7,8 6 0 -2 -2 6
14 1, 3,6, 8 2 0 -2 +2 -2

-
-
-
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TABLE XIII. PVM parameters for fcc nearest-neighbor cluster. See Fig. 4 for site indices.
Index Sites with Multiplicity Composition First Second Third Fourth
neighbor neighbor neighbor neighbor
L gy=-1 We We (0)n WiCi W, Ci W, Ci WG

1) 1 +1(-1) +1 +1 +1 +1
2(2) 6 12 +10(~10) +8 +8 +8 +8
3(@3) 6,7 12 +8(-8) +4 +8 +4 +4
4@) 5,7 6 +4(-4) +2 +2 +2 +6
5(5) 6,12 24 +16(-16) +8 +8 +12 +8
6(6) 6,11 24 +16(-—16) +12 +8 +8 +8
7@ 5,6,7 12 +6(—6) 0 +8 0 +8
8(8) 5,6,12 24 +12(-12) 0 +8 +8 0
9(9) 1,7,9 8 +4(-4) 0 0 +4 0
10(10) 5,6,11 48 +24(- 24) +8 +16 +8 0
11T  4,6,11 48 +24(-24) +8 0 +8 +32
12(12) 1,5,11 24 +12(-12) +4 0 +8 0
1313)  2,6,11 24 +12(=12) +8 +8 0 0
14(14) 1,6,11 24 +12(-12) +8 0 +4 0
15(15) 6,10, 11 8 +4(-4) +4 0 0 0
16(16) 5,6,7,8 3 +1(-1) -1 +3 -1 +3
1707 4,6,7,9 6 +2(=2) -2 +2 +2 -2
1818)  5,6,8,11 48 +16(—16) -8 +16 0 +16
19(19) 3,5,6,11 48 +16(—16) -8 0 +16 -16
20(20)  1,5,10,12 48 +16(—16) 0 +16 -8 +16
21(21) 1,6,7,10 24 +8(—8) 0 +8 0 -8
22(22)  5,6,9,11 12 +4(—4) 0 +4 0 -4
23(23)  1,5,7,10 24 +8(~8) 0 0 0 +8
24(24)  4,5,6,11 24 +8(=8) 0 0 0 +8
25(25) 1,6,9,11 48 +16(—16) 0 0 +8 -16
26(26)  1,5,7,12 12 +4(-4) 0 -4 0 +12
27(27)  1,5,7,11 24 +8(-8) 0 -8 +4 +8
28(28)  2,5,7,12 24 +8(-8) 0 -8 +4 +8
29(29)  2,5,9,10 24 +8(-8) +4 -8 0 +8
30(30) 1,6,11,12 24 +8(—8) +4 -8 0 +8
31(31) 1,6,7,11 48 +16(—16) +8 0 0 -16
32(32) 2,6,7,11 6 +2(=2) +2 +2 -2 -2
33(33)  1,6,10,11 48 +16(—16) +16 0 -8 -16
3432  5,6,7,8,11 24 +4(-4) -8 +16 -8 +16
3535  4,6,7,9,11 24 +4(-4) -8 +8 0 0
36(36)  1,4,7,9,11 24 +4(-4) -8 0 +4 0
3@ 1,3,6,9,11 24 +4(—4) -8 0 +8 -16
38(38) 3,5,6,9,11 12 +2(=2) -4 0 +4 -8
39(39) 2,5,6,9,11 48 +8(-8) -8 +16 -8 0
40(20)  4,5,6,7,11 48 +8(-8) -8 0 -8 +32
41(41) 1,6,7,8,11 48 +8(—8) -8 0 0 0
42(42) 1,3,6,11,12 24 +4(-4) -4 0 0 0

specified by an occupation number ¢, for each site
which can have the value +1 or = -1. o, refers to
the central site and o; (for i=1, z) refers to the z

8 7
\ |\
5—:——-6
i FIG. 3. Site number-
0 | ing used for bec clusters
a 3 in Table XII.
'~ .
\l
1 2

sites in the nearest-neighbor shell around the cen-
tral site. In the listing of cluster types (see Ta-
bles XII and XIII) we have specified only the shell
sites having o; = — 1 (the remainder of the shell sites
are understood to have ¢;=+1). The various shell
configurations are then labeled by the index k. It

is not necessary to enumerate those clusters having
negative occupation numbers on more than half of the
shell sites. These configurations will be the com-
plements of the tabulated clusters and can be gen-
erated from them by reversing the sign of o; on all
shell sites. Each cluster k will thus have a com-
plement which we denote by %. Any summation over
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TABLE XIII. (continued).

k g =-1 W, LACH W,Cl W, CE w,C} Ww,Ci
43@3)  1,6,7,9,11 48 +8(—8) -8 0 +8 -32
44(49) 1,6,8,9,11 48 +8(—8) -8 -16 +8 0
45(45) 1,5,6,7,10 24 +4(—4) 0 +8 -8 0
46(8)  1,3,6,10,11 48 +8(-8) 0 0 -8 0
477 1,5,6,7,11 24 +4(—4) 0 0 -4 0
48(48) 5,6,9,11,12 24 +4(~4) 0 0 0 -16
49(49) 1,6,8,10,11 48 +8(-8) 0 -16 0 0
50(50) 1,5,6,11,12 48 +8(~8) 0 -16 0 0
51(51)  4,6,8,10,11 24 +4(-4) 0 -16 0 +16
52(52) 1,4,6,11,12 24 +4(—4) 0 -16 0 +16
53(53) 1,6,10,11,12 24 +4(-4) +4 0 -8 0
54(54) 1,6,7,10,11 48 +8(-8) +8 0 -8 -32
55(55) 1,4,6,10,11 48 +8(—8) +8 -16 -8 0
56(56) 1,2,6,10,11 12 +2(-2) +4 0 -4 -8
5767  1,5,6,10,11 24 +4(-4) +8 0 -8 -16
58 1,5,6,7,8,10 12 0 -4 +8 —4 +4
59 2,4,5,6,9,11 12 0 -4 +8 -4 +4
60 4,5,6,7,8,11 12 0 -4 +4 -4 +12
61 1,5,6,7,8,11 24 0 -8 +8 -4 +8
62 2,5,6,8,9,11 24 0 -8 +8 -4 +8
63 1,3,5,6,11,12 48 0 ~-16 0 +8 —16
64 3,5,6,7,9,11 48 0 -16 0 +8 -16
65 3,5,6,9,11,12 24 0 -8 0 +8 - 24
66 1,3,6,8,9,11 12 0 -4 -4 +4 -4
67 1,5,6,7,10,12 24 0 -4 +8 -8 +8
68 1,3,6,10,11,12 24 0 -4 +8 -8 +8
69 1,6,7,8,10,11 48 9 -8 0 0 -16
70 2,5,6,9,11,12 48 0 -8 0 0 -16
71 1,3,6,8,10,11 48 0 -8 -16 0 +16
72 1,5,6,8,11,12 48 0 -8 -16 0 +16
73 1,3,6,7,10,11 48 0 0 0 -8 -16
74 1,5,6,8,10,11 48 0 0 0 -8 -16
75 1,6,7,9,10,11 16 0 0 0 0 -16
76 1,4,6,10,11,12 48 0 0 -16 -8 +16
7 1,3,4,6,10,11 48 0 0 -16 -8 +16
78 1,5,6,9,11,12 12 0 0 -4 0 -4
79 1,2,6,8,10,11 12 0 0 -4 0 -4
80 1,4,6,7,10,11 48 0 0 —-16 0 -16
81 1,4,6,8,10,11 48 0 0 -32 0 +16
82 3,4,6,8,10,11 4 0 0 -4 0 +4
83 1,4,6,8,11,12 4 0 0 -4 0 +4
84 1,2,6,10,11,12 48 0 +8 0 -16 ~16
85 1,5,6,7,10,11 48 0 +8 0 —-16 -16
86 1,5,6,9,10,11 24 0 +8 0 -8 - 24
87 1,4,5,6,10,11 12 0 +4 -4 -4 -4

k henceforth implies summation over % as well.

occupation of the central site is given by o, and so
the double index (o,, %) serves to specify the com-

Par

FIG. 4.

Site number-
ing used for fcec clusters
in Table XIII.

The

plete cluster configurations.

The multiplicity W, is the number of symmetry
partners that the kth shell configuration has. This
is determined by counting the number of different
configurations generated by applying the 48 sym-
metry operations of the cubic point group to the
The less symmetric the cluster the more
partners it will have, up to a maximum of 48. Be-
cause of the cubic symmetry of the lattice and the
input data, these symmetric partners must all oc-
cur with equal probability and may thus be grouped

cluster.

together in the calculations.

This considerably re-
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duces the number of actual configurations to be
dealt with.

(o), is the average “composition” of the shell
sites and is given by 3f.; 0, /2. (o), is the only tab-
ulated quantity that changes for cluster complements
(this being a change in sign) and is indicated by the
entries in parentheses.

Cj is the average value in the cluster % of the oc-
cupation-number pair product 0,0, (where i, j are
any two shell sites that are nth neighbors of each
other) and may be determined by direct inspection
of the cluster configuration. Cj is identical for the
complement cluster. Because the coefficients of
the PVM linear equations are the products W, Cj,
these are the quantities we have chosen to tabulate.

The linear constraint equations are as follows:

22 Wy Plog, B)=1, (A1)
oy &
2525 0o W, Plog, k)=c , (A2)

ook

CLAPP 4

EE ((7). WkP(o'[)) k):c ’ (A3)
9 k
2320 00 Wy Plog, B)=(1 =cay +c?, (A4)
% k
2225 CiW, P(ay, k)= (1 —c®)a,+c?, (A5)

[ R

0

where ¢ is the difference in atomic fraction of the
two components and the a’s are the Warren SRO
parameters.

If ¢ =0, then P(o,, k)=P(0,, k) and Eqs. (A2) and
(A3) are redundant.

In Eq. (A5), n takes on the values (2, 3, and 5)
for the bee cluster and (1, 2, 3, and 4) for the fcc
cluster.

The quantity to be maximized subject to these
constraints is

I= =223 W,P(og, k) InP(oy, k) .

a9y k

(A6)
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